INDO-SWISS Building Energy Efficiency Project (BEEP)

Technical assistance for thermal comfort and energy efficient design

Mirjam Macchi Howell

18 September 2019
India’s energy consumption is growing the fastest among all major economies.

- Residential buildings consume ~25% of the total electricity.
- By 2030 residential buildings are expected to consume 38% of electricity in India.
- Projected residential building construction between 2018 and 2030 is >15 billion m².

Objective: Reduce energy consumption in new commercial, public and residential buildings in India through energy-efficient and thermally comfortable design.

Partner Agencies:
- Bureau of Energy Efficiency India
- Swiss Agency for Development and Cooperation
CASE STUDY: OFFICE BUILDING – ARANYA BHAWAN, JAIPUR
Aranya Bhawan: Measures to Reduce Heat Gains

Roof insulation

U-value: 0.6 W/m².K

Wall insulation

U-value: 0.5 W/m².K

Double-glazed windows

Reduction in glazed area and external shading

U-value: 1.8 W/m².K

SHGC: 0.24

VLT: 36%
Aranya Bhawan: Energy Efficient Cooling System

- Centralised high efficiency water-cooled chiller
- Sewage treatment plant (capacity: 15 m³/d) to provide water for cooling towers
Aranya Bhawan: Renewable Electricity

- Rooftop 45 kWp grid-connected Solar photovoltaic system (SPV) generating around 60,000 kWh per year (~20% of the annual electricity requirement)
- Additional 100 kWp ground mounted SPV system planned
Aranya Bhawan: Energy Monitoring

- Measured Energy Performance Index of **43 kWh/m²/year**.
- ~ **50% lower** compared to the benchmark for energy-efficient office buildings in India.
- Construction costs about >**3%** than conventional design.
CASE STUDY: AFFORDABLE HOUSING – SMART GHAR-III, RAJKOT
Smart GHAR III (Green Homes at Affordable Rate) is a social housing project in Rajkot.

- 1176 2-room apartments (33.6m²)
- Most families cannot afford air-conditioning

Aim: Improve thermal comfort through building design
Smart GHAR III: Reducing heat gain through walls, roof and windows

Walls & Roof

- 230mm Autoclaved Aerated Concrete Blocks (U-value of 0.8 W/m².K). AAC cavity walls on southern side (U-value 0.3 W/m².K)
- High-reflective glazed tile roof cladding

Windows

- Low Window to Wall Ratio
- Partly opaque windows/shutters
- Casement windows with large natural ventilation openings
Smart GHAR III: Additional assisted ventilation to increase thermal comfort

- A fan on top of the service shaft provides additional ventilation when the ambient temperatures are low.
During hot summer in Rajkot the daily ambient high temperature is ~ 40°C

Indoor room temperature in flats between 30-32°C → 8-9°C below outside temperature without any cooling
Development of the ECBC-R code

- Indo Swiss BEEP project provided technical support for development of new Energy Conservation Building Code for Residential Buildings

- BEEP is assisting BEE to disseminate ECBC-R to states and municipalities
 - Design of energy-efficient affordable housing projects
 - Amend the building regulations to include ECBC-R
 - Capacity building of officials and building sector professionals
 - Working with selected cities for the implementation
Features of the ECBC-R code

- Building envelope (roof, walls, windows and external openings)
- Sets minimum building envelope performance standards to
 - Limit heat gains / losses
 - Exploit adequate natural ventilation potential
 - Exploit adequate daylighting potential
Estimated impacts of the ECBC-R code

- Estimated impact of ECBC-Residential during 2018-2030
 - Minimum 20% energy savings (in cooling) as compared to a typical building
 - 125 billion kWh of electricity savings
 - 100 million tonnes of CO₂ equivalent abatement
Thank you for your attention

http://www.bEEPindia.org